The Development of Novel Cellular Therapeutics

Some Lessons from the Private Sector

Stephen A. Sherwin, M.D. Chairman and CEO Cell Genesys, Inc.

California Institute for Regenerative Medicine July 13, 2006

Cell Genesys Today

Next generation biological therapies for cancer

- Lead program GVAX[®] immunotherapy for prostate cancer in two multinational Phase 3 trials
- Positive Phase 2 data across GVAX® platform prostate cancer, pancreatic cancer and leukemia
- Complementary clinical stage product platform CG0070 oncolytic virus therapy for bladder cancer
- Manufacturing capabilities for product launch
- Strong balance sheet

The History of Cell Genesys

One-slide summary of 17 years!

- * 1989 1995: The Technology Development years
 - Gene activation technology for therapeutic proteins
 - Transgenic technology for human monoclonal antibodies
 - Cell/gene therapy technology for HIV infection
- * 1996 1999: The Restructuring years
 - Spinout of Abgenix (monoclonal antibodies)
 - Acquisition of Somatix (GVAX[®] cellular immunotherapies for cancer)
- 2000 present: The Product Development years
 - 4 more acquisitions and 1 more spinout (Ceregene)
 - Establishment of large scale manufacturing capabilities
 - Advancement of GVAX® Prostate to Phase 3

So What Do Biotech and Home Remodeling Have in Common?

Timeline and cost realities

"It takes twice as long and costs twice as much."

A Specific Example: Amgen's Panitumumab

A timeline experienced by Steve Sherwin

1995: Product selection at Cell Genesys

1996: Initiation of product development at Abgenix

2006: BLA submitted to FDA by Amgen

Another Specific Example: Genentech's Avastin®

A timeline experienced by Steve Sherwin

1973: Attended lecture by Dr. Judah Folkman at Harvard Medical School

1987: Attended first VEGF Research Project Team Meeting at Genentech

2004: Attended ASCO presentation of successful Phase 3 trial in colorectal cancer

Why Does It Take So Long?

Multiple challenges

- Technology challenges
- Clinical challenges
- Regulatory challenges

Technology Challenges

Limitations of first generation technologies

- Therapeutic proteins
 - Availability of gene expression technology for complex proteins
- Monoclonal antibodies
 - Availability of human (humanized) antibodies
- Gene therapies
 - Availability of safe and efficient gene delivery (vector) systems
- Cell therapies
 - Manufacturing and product characterization at pharmaceutical scale

Clinical Challenges

Evaluating new therapies for chronic diseases

- Efficacy measurements in chronic diseases
- Demonstration of long-term safety
- Size, duration and cost of Phase 3 trials

Regulatory Challenges

Evaluating complex biological therapies

- Adequacy of existing CMC guidelines
- Current regulatory framework for Phase 3
- Implementation of FDA's Critical Path Initiative

What Are The Potential Solutions?

Some lessons from the private sector

- Plan for longer timelines and more expensive programs (and manage expectations)
- Be willing to turn on a dime
- Dismantle all signs of ego and collaborate

What Can The Private Sector Do?

Complementary strengths and assets

- What academia does well
 - Basic discovery research
 - Identification of clinical opportunities
 - Identification of clinical limitations
- What the private sector does well
 - GLP pre-clinical studies
 - GMP manufacturing
 - GCP clinical trials

CELL GENESYS

Changing the Future of Oncology®

Nasdaq: CEGE www.cellgenesys.com